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Bioinformatics and data science for mass spectrometry data analysis
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Abstract　Mass spectrometry data contributing to proteome and metabolome analyses play an important role in omics sci-
ences. Moreover, the integration of multilayer data called trans-omics has steadily become popular in life sciences, increas-
ing the significance of bioinformatics and data science. This minireview, therefore, outlines commonly used bioinformatics, 
and data science tools, mainly based on our previous studies using mass spectrometry data. Here, we not only introduce 
some bioinformatics platforms and data pipelines but also provide a concise explanation of multivariate correlation net-
work analyses and machine learning as well as time-series data analysis. Finally, future perspectives on applying bioinfor-
matics and data sciences to mass spectrometry data are outlined.
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Introduction
Recent developments in omics technologies have made 

the acquisition of comprehensive bioinformation from vari-
ous biological samples and/or organisms much easier than 
ever1). Transcriptome analysis via RNA sequencing (RNA-
seq) has been widely used in various scientific fields, allow-
ing researchers to profile expression patterns of tens of 
thousands of genes2). Moreover, this technology has been 
extended to single-cell RNA-seq (sc-RNA-seq) for elucidat-
ing the heterogeneity of cells, and studies involving 

sc-RNA-seq have dramatically increased due to its innova-
tiveness in cell sorting and high-throughput sequencing3‒5). 
However, mass spectrometry still plays a pivotal role in 
omics techniques given its ability for proteome and/or 
metabolome profiling. In addition, the integration of multi-
layer omics data called trans-omics analyses has gradually 
become popular in life sciences, providing researchers 
access to composite multivariate data1).

To unveil the latent relationship among such multivariate 
data or grasp data structures, implementing bioinformatics, 
and data sciences to your own data is mandatory, for which 
numerous visualizing, and/or efficient bioinformatics tools 
have been available for free6‒8). Owing to the widespread 
use of open-source coding languages, such as R, and 
Python, implementing, and/or customizing such valuable 
bioinformatics tools has never been more easier. In particu-
lar, data-driven data analyses, such as multivariate and net-
work analyses, are considerably helpful for discovering sig-
nificant explanatory variables from complicated omics data 
without special presumptions. For instance, correlation net-
work analysis can successfully estimate the relationship 
among explanatory variables in omics data9‒12) and detect 
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communities in the targeted biological network. Moreover, 
centrality analyses, such as a betweenness centrality analy-
sis, can elucidate hub molecules in a biological network, 
which are bottlenecks in the targeted network9). Machine 
learning techniques, such as random forest (RF) and sup-
port vector machine (SVM), have also become popular for 
constructing discriminant or regression models of multivar-
iate data, and these techniques are often used for selecting 
significant molecules (i.e., potential biomarkers) for dis-
criminating groups or mechanisms13).

Mathematical and computational modeling techniques 
have been used for estimating credible intervals (CI) 
instead of confidence intervals through classical statistical 
analyses14,15). For instance, time-series data analyses, 
including Bayesian state space modeling, are applied to 
time-series data obtained through mass spectrometry given 
that it is fundamentally inappropriate to apply classical sta-
tistical analysis to time-series data14).

As described earlier, the significance of bioinformatics, 
and data sciences on mass spectrometry multivariate data is 
expected to increase more than ever, making the outlining 
of commonly used bioinformatics tools for mass spectrome-
try data highly meaningful. This minireview, therefore, 
introduces representative bioinformatics tools that have 
been applied to mass spectrometry data, especially metabo-
lome data, mainly based on our previous studies10‒12,14,16,17). 
We also address bioinformatics platforms and data pipe-
lines, the application of correlation network analysis and 
machine learning to metabolome data, and mathematical, 
and computational modeling for time-series data. Finally, 
future perspectives on applying bioinformatics and data sci-
ences to mass spectrometry data are outlined.

1.　 Overview of Bioinformatics Platforms and 
Data Pipelines

To date, numerous bioinformatics tools for mass spec-
trometry multivariate data have been reported, and previous 
review articles are helpful in outlining such tools17‒28). Prior 
to bioinformatics analyses, normalization is generally per-
formed for mass spectrometry data because matrix effects 
(i.e., ionization enhancement or ionization suppression) can 
disrupt the quantitativity in mass spectrometry. There are 
various normalization techniques such as internal standard 
(IS) normalization and locally weighted scatterplot smooth-
ing (LOESS)-based normalization methods for mass spec-
trometry data10). As far as we know, IS normalization 

method using stable isotopes of targeted compounds has 
still been commonly used for MS-based metabolomics. Our 
group has also reported that a total intensity-based normal-
ization method was the optimal inter-batch normalization 
technique for gas chromatography/tandem mass spectrome-
try-based metabolomics10). For scaling of mass spectrome-
try data, unit variance scaling is commonly used, while 
pareto-scaling is often used for orthogonal projection to 
latent structures discriminant analysis (OPLS-DA)16,37).

Among bioinformatics platforms and data pipelines for 
metabolome data, MetaboAnalyst (the latest version 5.0), a 
web-based comprehensive platform developed by Wishart 
et al.28), might be the most popular. Similar to other bioin-
formatics platforms, MetaboAnalyst is user-friendly, and 
can perform multivariate analyses, such as principal com-
ponent analysis (PCA), projection to latent structures dis-
criminant analysis (PLS-DA), and OPLS-DA. This platform 
also allows for analysis of variance (ANOVA), metabolite 
set enrichment analysis, metabolic pathway analysis, and 
multivariate receiver operating characteristic (ROC) curve 
analysis based on PLS-DA, SVM, or RF.

In omics studies, multiple comparisons commonly cause 
problems with the analysis of statistical significance29). 
Therefore, appropriate correction methods, such as Bonfer-
roni and false discovery rate (FDR) correction meth-
ods30,31), are generally required for multiple comparisons. 
Bonferroni correction method adjust familywise error rate, 
while FDR correction method literally control false discov-
ery rate, where q-values are generally used instead of p-val-
ues with FDR correction. Our previous study demonstrated 
that the newly developed R-based platform called PiT-
MaP17) can automatically perform two- or multi-pair statisti-
cal analyses with FDR correction for multivariate data. In 
the PiTMaP algorithm, PLS-DA is used for selecting vari-
ables that are subjected to significant analyses, allowing for 
the objective selection of variables for significant analysis. 
PiTMaP also automatically generates box-and-whisker plots 
for all explanatory variables and score and loading plots for 
PCA and PLS-DA, in addition to automatically drawing 
box-and-whisker plots for significantly altered variables. 
Fig. 1 shows some parts of the results obtained automati-
cally within 30 s via PiTMaP when applied to hepatic 
metabolome data from mouse models of acetaminophen-in-
duced liver-injury and control mice. Such bioinformatics 
data pipelines can dramatically improve the efficiency of 
multivariate data analysis considering their ability to auto-
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matically and objectively provide results. Our team has 
been improving PiTMaP to develop a web application that 
implements other bioinformatics tools to achieve high-effi-
ciency bioinformatics data analyses.

2. Data-driven Bioinformatics
2.1.　Correlation network analysis

As mentioned earlier, data-driven bioinformatics is essen-
tial for identifying potential biomarkers and/or influential 
hub molecules in targeted biological networks. Correlation 
network analysis is based on pairwise Peason’s or Spear-
man’s correlation coefficients, and it is widely applied not 
only to transcriptome, proteome, and metabolome data but 

also to metagenome data9,11,32,33). Moreover, the trans-omics 
approach strongly depends on data-driven network analysis. 
Zhou et al. reported a comprehensive web-based platform 
for multi-omics called OmicsAnalyst, where a correlation 
network analysis is applicable for multi-omics data7). Cor-
relation network analysis can extract hub molecules, which 
are the most influential variables in the targeted biological 
networks. To identify such hub molecules, centrality analy-
sis of network has been commonly used9‒12). There are sev-
eral types of centrality indices, namely betweenness cen-
trality (BC), degree centrality (DC), closeness centrality 
(CC), and eigenvector centrality (EC). DC is the simplest 
centrality index, and the high DC value simply means that 

Fig. 1.　Results automatically created by PiTMaP.
(a) PLS-DA score and loading plots for the control and acetaminophen (APAP)-induced liver injury model mice with a VIP crite-
rion of 1.0. Red: APAP model mice and blue green: control mice in PLS-DA score plots. Dotted and solid circle in the score plots 
show 95 and 99% confidence intervals of all plots, respectively. Colored circles show 95% confidence intervals of each cohort, and 
(b) box-and-whisker plots for significantly altered metabolites. Reprinted with permission from Anal Chem 92(12): 8514‒8522, 
2020. Copyright @ 2020 American Chemical Society.
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the molecule with high DC value have many interactions 
with other molecules. EC is an expansion of DC, and it is 
defined by total sum of neighbor molecules’ centralities. BC 
and CC are based on the shortest paths. CC considers the 
molecule with the shortest paths as the hub molecule, while 
BC considers the molecule that is the most frequently 
passed through in the shortest paths as the hub molecule. 
Centrality analysis can rank explanatory variables in a tar-
geted network according to importance via the centrality 
index, with variables having high centrality values literally 
being at the center of the targeted network.

Our previous studies showed that correlation network 
analyses could successfully extract hub molecules in the 
metabolome network (Figs. 2 and 3). In our studies, 
betweenness centrality was commonly used for extracting 
the hub molecules. In Figs. 2 and 3, the size of each node 
(circle) was proposed to the corresponding betweenness 
centrality values, and thus, bigger size of circle visually 

demonstrates the importance of hub molecules in the tar-
geted network. Each color of node also indicates the clus-
ters determined by the hierarchical cluster analysis. Fig. 2 
shows the hub metabolites in the blood metabolome of 
maternal mice exposed to a phthalate during pregnancy, 
and these metabolites could be associated with fetal lethal-
ity via phthalate exposure11). Fig. 3 also shows hub mole-
cules in HepG2 cells exposed to some mitochondrial toxi-
cants, and these hub molecules could be molecular 
indicators for discriminating mitochondrial toxicity mecha-
nisms12). These results demonstrated that a correlation net-
work analysis could be a powerful tool for unveiling hidden 
key factors in a targeted biological network. However, 
given that pseudo-correlations could potentially exist 
during correlation network analysis, we need to pay close 
attention to the biological interpretation of the results.

To draw such correlation-based networks, setting a 
threshold for the selection of correlated variables is neces-

Fig. 2.　Network analysis results for the blood metabolome of maternal mice exposed to a phthalate during pregnancy.
The criterion was set at R＞0.75, and the size of each node (circle) was proposed to the corresponding betweenness centrality 
(BC) values. Each color (i.e., red, green, yellow and etc.) indicates the clusters determined by the hierarchical cluster analysis 
(Reprinted from ACS Omega 7(27): 23717‒23726, 2022).
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sary. To date, r＞0.75‒0.80 has been the commonly 
accepted threshold for correlation network analysis. 
Though this threshold has been experimentally accepted by 
many researchers, the use of such values still remains arbi-
trary. In fact, correlation coefficient-based thresholds could 
be theoretically determined. In line with this, Langfelder 
and Horvath demonstrated weighted correlation network 
analysis (WGCNA)34), which can keep overall information 
of correlation coefficients while reducing false positives; 
however, given its somewhat tedious implementation, its 
applications to omics data have been limited at this time.

2.2.　Machine learning
In medical and medicinal sciences, one of the most inter-

esting things for omics data is searching for potential bio-
markers that can discriminate disease groups from healthy 
control groups or predict diseases and/or their levels. For 
this purpose, differentially expressed gene (DEG) analysis 
had generally been performed for transcriptome data.2,35) 
For instance, Robinson et al. reported that the R-based bio-
informatics tool called edgeR can create MA-plot, an appli-
cation of a Bland‒Altman plot for gene data, and visualize 
DEGs35). For metabolome data, multivariate analyses, such 
as PLS-DA, and OPLS-DA, as well as PCA-regression and 

Fig. 3. Network analysis results for metabolome data obtained from HepG2 cells exposed to some mitochondrial toxicants.
The criterion was set at R＞0.75, and the size of each node (circle) was proposed to the corresponding betweenness centrality (BC) 
values Hub-metabolites were determined by BC values. Each color (i.e., purple, yellow green and etc.) indicates the clusters deter-
mined by the hierarchical cluster analysis (Reprinted with permission from Toxicol Appl Pharmacol 457(15): 116316, 2022).
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PLS-regression (PLSR), have been commonly used36). In 
our previous studies, PLSR was used for predicting biologi-
cal states using metabolome data16, 37).

In addition to these commonly-used approaches, machine 
learning, such as RF, and SVM, have recently been applied 
to omics-data to construct discriminant and prediction mod-
els38,39) given that these methods can be easily implemented 
by R or Python more than initially expected. In our previ-
ous studies, RF, and ROC curves were used for selecting 
important metabolites that can discriminate groups, where 

we programmed that hyperparameters of RF (e.g., mtry) 
were automatically tuned and area under curve by each 
ROC curve were automatically calculated, determining the 
most important variables for discriminating groups auto-
matically11,12). This will facilitate the application of 
machine learning to omics data.

2.3.　Time-series data analysis
Mathematical and computational modeling techniques 

have been used for understanding biological data6,14,15,40). 

Fig. 4. Time-series changes in (a-1, b-1, and c-1) L-glutamic acid (L-Glu) and (a-2, b-2, and c-2) gamma-aminobutyric acid 
(GABA) levels in the microdialysate every 1 min, and their credible intervals (blue band) estimated by Bayesian 
state-space model using the steady state levels.
The model could detect significant deviation (*) of the neurotransmitters via depolarization induced by replacing high-potassium 
containing artificial cerebrospinal fluid (Reprinted with permission from Talanta 234(1): 122620, 2021).
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Sriyudthsak et al. reviewed mathematical modeling and 
dynamic simulation of metabolic reaction systems for time 
series data of metabolome15). Hirai and Shiraishi also 
reported on the mathematical modeling of plant metabolic 
systems for time-series data40).

Unlike the aforementioned cross-sectional data (i.e., one 
time-point data), time-series data contain trends, cycle, 
irregularity, and seasonality; thus, appropriate modeling 
methods, such as autoregressive, autoregressive moving 
average, and state space models, are generally required for 
understanding time-series data. In our previous report, we 
applied a Bayesian state-space model to time-series data 
obtained from combinational use of in vivo microdialysis 
and ambient ionization mass spectrometry14). In this study, 
quantitative time-series data of neurotransmitters (GABA 
and glutamate) were obtained from each living mouse brain 
via an in vivo microdialysis technique. Conventionally, 
time-series data obtained from microdialysis were statisti-
cally analyzed by applying the t-test and/or ANOVA to each 
time point, although such statistical tests are fundamentally 
inappropriate for analyzing time-series data given their 
autocovariance (autocorrelation) and periodicity. In our 
study, therefore, we implemented the Bayesian state-space 
model using the R and Stan software and applied the model 
to estimate the CI based on the steady state (initial state) 
levels of the neurotransmitters14). Here, we used the follow-
ing equation 1 to estimate the CI range.

pred (t＋i)＝Nomal [2*μpred (t＋i － 1) - μpred (t＋i － 2), σ ]  
 (Eq. 1)

In this equation, t is time, i is difference, pred(t＋i) is a 
prediction value, μpred (t) is level component at t, and σ is 
standard deviation of process error. We ran 4 chains of 
8,000 from the posterior distribution and discarded the first 
2,000 ones before inference. Model diagnostics were also 
confirmed using Rhat values. As shown in Fig. 4, the 
Bayesian state-space model successfully estimated the CI 
range of the neurotransmitters from their steady state, and 
could detect significant deviations in the neurotransmitters 
via depolarization induced by replacing the high-potassi-
um-containing artificial cerebrospinal fluid. This approach 
enables us to evaluate variations in the target biomolecules 
within the time-series data without testing for statistical sig-
nificance. In addition, our group has developed in vivo real-
time monitoring techniques for metabolites in mouse 
tissues using ambient ionization mass spectrometry41‒43), 

which can more easily provide time-series data. Now, we 
apply a time-series analysis to real-time monitoring data 
obtained by this technique. Our successful demonstration of 
a platform for such time-series data would certainly 
increase the value of ambient ionization mass spectrometry.

3. Future Perspectives
As mentioned earlier, researchers have already been able 

to access big omics data, and the significance of bioinformat-
ics and data science has been steadily increasing. Moreover, 
diverse data obtained via multimodal analytical methods will 
be combined in near future. For instance, Zhu et al. reported 
on the application of single-cell multimodal omics44), where 
they emphasized “the power of many.” Bredikhin et al. also 
reported on the multimodal omics analysis framework called 
MUON8). Thus, mass spectrometric information, which is 
positioned at an intermediate level of genomic and pheno-
typic information in multi-omics, is expected to become 
more a significant part of multimodality in terms of bridging 
each level. In addition to analytical multimodality, spatiotem-
poral information is expected to become more valuable in the 
future45, 46). Thus, more focus will be placed on single cell mass 
spectrometry and spatiotemporal mass spectrometry47, 48).  
Multimodality and spatiotemporal information will be a key 
factor in elucidating hidden molecular mechanisms, with 
such “wide data” requiring further improvements in bioinfor-
matics and data science tools.

4. Conclusions
In this mini review, we outlined the commonly-used bioin-

formatics and data science tools for mass spectrometry data, 
mainly based on our previous studies. To date, several user-
friendly platforms/data pipelines have been reported, with 
their usability being continuously improved. We demon-
strated that multivariate and correlation network analyses 
have been useful for understanding omics data and that 
machine learning, such as RF, and SVM, is expected to 
become more popular for discriminant and/or prediction anal-
yses of omics data. Also, mathematical, and computational 
modeling techniques are required for analyzing time-series 
data. Given the feasibility of implementation by freely avail-
able coding languages such as R and Python, bioinformatics 
and data sciences have already been mandatory for any scien-
tists, and these techniques can provide valuable information 
to elucidate hidden molecular mechanisms in organisms. 
Finally, future perspectives suggest that mass spectrometric 
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multivariate data will play a more important role in multi-
modal and spatiotemporal information in the future.
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