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Abstract Metabolomics is an essential tool for not only understanding the pathophysiology of various diseases but also 
for searching for initial clues to unknown toxic effects of drugs. Mass spectrometry-based metabolomics has achieved 
highly sensitive and selective analysis of metabolites, and gas chromatography mass spectrometry remains a gold standard 
because of its robustness and usability. However, it is tedious to annotate metabolites with electron ionization (EI)-based 
mass spectra; thus, gas chromatography tandem mass spectrometry (GC/MS/MS)-based metabolome analysis has played an 
important role in metabolomics. In particular, the selected reaction monitoring (SRM) mode achieves higher selectivity and 
an improved signal-to-noise ratio, which leads to easier metabolite identification. In this mini review, we concisely outline 
the pros and cons of GC/MS/MS-based metabolome analysis and provide its applications to pathophysiological analysis of 
disease and drug-induced toxicity in animal models based on our previous studies. Finally, future perspectives for newly 
developed high-throughput metabolome analysis are briefly described.
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Introduction
Metabolome analysis is a powerful tool for investigating 

the pathophysiology of various diseases and/or toxic effects 
of drugs together with other omics techniques1‒4). Cur-
rently, mass spectrometry-based platforms are widely used 
for metabolome analysis in various fields because of their 
high selectivity and sensitivity5). Although appropriate deri-
vatization methods such as methoxylation and trimethylsi-

lylation are required for gas chromatographic separation of 
analytes6,7), the gas chromatography/mass spectrometry 
(GC/MS)-based platform has remained a gold standard for 
targeted metabolome analysis because GC is a robust ana-
lytical system, and a capillary column shows high separa-
tion capacity for analytes. However, metabolite annotation 
using electron ionization (EI)-based mass spectra can be 
tedious for analysts, even when automated annotation soft-
ware is available for EI-based metabolome data, and there 
is also room for improving quantitativity, which will be 
mainly achieved by increasing selectivity; the selectivity of 
GC/MS is sometimes insufficient when targets and contam-
inants are co-eluted.

To obtain a higher signal-to-noise (S/N) ratio and selec-
tivity, gas chromatography tandem mass spectrometry (GC/
MS/MS)-based targeted metabolome analysis has been 
increasingly used in medical and toxicological fields8‒15). 
Since selected reaction monitoring (SRM) mode can dra-
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matically improve selectivity and S/N ratio, GC/MS/MS, 
especially SRM mode analysis, provides not only high 
operability for metabolite annotation, which is achieved by 
simplifying the results, but also higher relative quantitativ-
ity. Indeed, our team successfully applied GC/MS/
MS-based targeted metabolome analysis to drug-induced 
acute intoxication in animal models to estimate unknown 
toxic effects of drugs and understand their pathophysiol-
ogy4,16,17). As described later, GC/MS/MS-based targeted 
metabolome analysis is extremely useful for exploratory 
investigation of initial clues to unknown mechanisms of 
various diseases and drug-induced toxicity.

Some vendors currently provide ready-to-use GC/MS/
MS-based targeted metabolome platforms, and such com-
mercially available platforms can greatly contribute to the 
widespread use of metabolomics in various fields. GC/MS/
MS-based metabolome analysis has also become more 
familiar to scientists who will use metabolomics in their 
research. Moreover, technological advances in ionization 
for mass spectrometry will provide researchers with a new 
approach to high-throughput metabolome analysis, and 
ambient ionization/mass spectrometric techniques have 
been extended to various scientific fields including metabo-
lomics.

In this mini review, we concisely outline the pros and 
cons of GC/MS/MS-based targeted metabolome analysis 
and introduce its application to drug-induced toxicity and 
animal disease models for pathophysiological analysis 
based on our previous studies. Additionally, we provide 
future perspectives using new analytical techniques, 
namely ambient ionization/mass spectrometry, for 
high-throughput metabolome analysis.

GC/MS/MS-based Targeted Metabolome Anal-
ysis

GC/MS/MS-based targeted metabolome analysis has 
been performed not only in chemical ionization (CI) mode 
but also in EI mode8‒15). From the viewpoint of method 
development, the CI-based method is generally simpler 
than the EI-based one because CI normally generates pro-
tonated or deprotonated ions; thus, precursor ions are easily 
selected for each metabolite. Xu et al. used GC/positive 
chemical ionization (PCI)-MS/MS to analyze 37 fatty acids 
derived from methyl esters in the plasma of coronary artery 
disease patients10). Tsikas et al. reviewed a GC/electron cap-
ture negative ion chemical ionization (ECNICI)-MS/

MS-based method for oxidized and nitrated oleic acid in 
biological samples9). Generally, negative ion chemical ion-
ization dramatically improves the S/N ratio, which is 
mainly due to background noise reduction and improved 
ionization selectivity18,19). In their study, pentafluorobenzyl 
(PFB) ester derivatization was used to produce [M-PFB]－ 
and [M-H]－ ions, which were selected as precursor ions, 
improving the selectivity of the method.

Unlike CI, EI provides many fragment ions during ion-
ization because high internal energies are supplied to the 
ionized molecules created by EI. Since the intensity of 
molecular ions (M＋•) is generally weak or undetected in EI 
analysis, analysts sometimes need to select fragment ions 
as precursor ions for collision-induced dissociation. Specifi-
cally, the GC/EI-MS/MS-based method is more complex 
with respect to optimizing analytical conditions, such as 
selecting SRM transitions and setting the collision energy 
(CE), than that with GC/CI-MS/MS, though a large variety 
of SRM transitions can be selected for each metabolite, 
allowing the selectivity of the method to be dramatically 
enhanced. Tsugawa et al. reported a GC/EI-MS/MS method 
using SRM analysis with TMS derivatization, achieving 
simultaneous detection of 110 metabolites11). Also, Hirata et 
al. used a GC/EI-MS/MS-based metabolome method and 
determined sensitive metabolic biomarkers for pancreatic 
cancer in human blood13).

To develop a GC/EI-MS/MS-based metabolome method, 
an enormous amount of time is required to select appropri-
ate SRM transitions, optimize the CE for each transition, 
and allocate scheduled SRM. Therefore, some vendors have 
provided commercially available methods for GC/MS/
MS-based metabolome analysis, which are optimized in 
advance and are thus highly practical for users who want to 
begin using metabolomics.

In our previous studies, we used an EI-based method for 
metabolome analysis12,14,15), which is commercially avail-
able from Shimadzu Corporation (Kyoto, Japan). With this 
method, appropriate SRM transitions are selected in 
advance, and the CEs for each SRM transition and sched-
uled time are sufficiently optimized. Currently, ca. 500 
metabolites are pre-registered for the method and can be 
simultaneously detected in a single run, and quantifier and 
qualifier ions for each metabolite are selectable, which 
enhances the identification accuracy for the targeted metab-
olites. Additionally, the retention indices of each metabolite 
are pre-registered in the method, and the retention times of 
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each metabolite can be easily adjusted by analyzing 
alkanes20,21).

Based on these procedures, we can easily change the 
scheduled time and optimize dwell times for each transition 
using Excel-based software provided by the vendor. Partic-
ularly, adjusting and optimizing scheduled times for each 
SRM transition are time-consuming unless analysts can use 
such optimization software. Owing to such user-friendly 
tools, commercially available methods facilitate widespread 
use of metabolomics in various fields.

As described above, methoxylation and trimethylsilyla-
tion are generally used for metabolite derivatization in GC/
MS- and GC/MS/MS-based metabolome analyses, though 
some researchers used other derivatization techniques to 
improve sensitivity or selectivity. Kvitvang et al. reported 
that methyl chloroformate (MCF) derivatization was 
applied to 67 principal metabolites including amino acids 
and non-amino organic acids, achieving significant sensitiv-
ity for these in urine and serum samples8). This suggested 
that there is a high potential to improve the selectivity or 
sensitivity by changing derivatization methods in GC/MS/
MS-based targeted metabolome analysis. However, a lim-
itation of GC/MS/MS-based metabolome analysis is that it 
is generally difficult to sensitively detect highly polar 
metabolites such as phosphate metabolites, and these can-
not all be detected by GC/MS/MS. Thus, compensatory 
analytical techniques such as liquid chromatography tan-
dem mass spectrometry (LC/MS/MS)-based-metabolome 
analysis are also necessary to expand the coverage of target 
metabolites.

Application of GC/MS/MS-based Targeted 
Metabolome Analysis to Pathophysiology of 
Animal Models
Pathophysiological analysis of animal disease models 
by GC/MS/MS-based targeted metabolome analysis

As is well known, metabolome analysis is a useful tool 
for investigating initial clues concerning the pathophysiol-
ogy of various diseases animal models. To investigate 
potential biological markers, however, metabolome analy-
ses on blood samples from animal disease models were per-
formed in most studies, while more information is obtained 
by tissue metabolome analysis to achieve pathophysiologi-
cal understanding of diseases models, because the blood 
metabolome is easily changed depending on metabolome 
changes in pathological and/or toxicity-affected organs. For 

instance, we performed metabolome analysis on serotonin 
syndrome (SS) rat models, where hyperthermia and abnor-
mal muscle contraction such as myoclonus are the main 
symptoms of SS15,22). We applied GC/MS/MS-based metab-
olome analysis to plasma, liver and muscles of control and 
the SS rats and readily identified 144‒195 metabolites in 
plasma and the tissue samples. Many plasma metabolites 
were significantly increased, though these have no remark-
able networkability (Fig. 1a). Significantly changed metab-
olites in liver and muscles showed respective networkabil-
ity (Fig. 1b‒d), and these changes were strongly related to 
the SS symptoms. Consequently, these results suggest that 
significant changes in the plasma metabolome of the SS 
model rats were caused by the metabolome changes in the 
target tissues. We also observed site differences in metabo-
lome changes in muscles, which were well matched to sup-
porting results obtained from gene-expression analysis of 
uncoupling protein-3 (UCP-3). Finally, we revealed the 
pathophysiology of SS based on metabolome analysis as 
shown in Fig. 2.

Exploratory investigation of unknown toxic effects of 
drugs in toxicology

In forensic toxicology, abuse of new psychoactive sub-
stances (NPSs) is a social problem worldwide23). To date, 
various NPSs have been distributed in underground mar-
kets, and cathinones and cannabinoid receptor (CBR) ago-
nists are most frequently abused24‒26). It is essential to eval-
uate the acute toxicity of NPSs in forensic toxicology, 
though minimal information is available on their toxicity. 
This is because they are generally synthesized in clandes-
tine laboratories, and it is too difficult for forensic toxicolo-
gists to obtain information on either their chemical struc-
tures or pharmacokinetics27). Nevertheless, some NPSs are 
highly toxic and sometimes fatal to humans28,29). Although 
it is too difficult to extrapolate phenotypic changes in 
human from the metabolome changes in animal models, 
metabolomics is a useful technique for understanding 
NPS-induced toxicity in animal models to search important 
clues related to their toxic effects. In particular, the results 
obtained are easily understandable as phenotypic changes, 
which are pivotal to estimating the unknown toxic effects 
of NPSs on animal models30‒32). This idea is also accepted 
in toxicological fields for estimating or predicting the 
adverse effects of drugs on animal models, and thus metab-
olomics has been widely applied not only to forensic toxi-
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Fig. 1.　Networkability of the significantly altered metabolites in each tissue.
(a) Plasma, (b) liver, (c) gastrocnemius muscle, and (d) trapezius (reprinted from ref. 15 with permission).

Fig. 2.　 Pathophysiology of the metabolome alteration observed in serotonin syndrome rat models (reprinted from ref. 15 
with permission). Abnormal contraction of skeletal muscles induces up-regulation of anaerobic respiration, result-
ing in hyper thermogenesis via UCP-3 activation. Various metabolites were also accumulated in blood, which finally 
leads to urea cycle disruption in the liver and increase of BUN.
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cology but also to toxicological assessment using animals. 
A concise review on applying metabolomics to the adverse 
effects of drugs has already been published17).

In our study, a high dose of CBR agonist can induce sei-
zure-like abnormal behavior in rodents, though the main 
mechanisms of this have not been elucidated; we applied 
GC/MS/MS-based metabolome analysis to a CBR agonist 
administered to rat cerebrum to investigate clues to abnor-
mal behavior14). In this study, rat cerebrum was pretreated 
by the Bligh and Dyer extraction method, and an internal 
standard (IS) correction method was used for relative quan-
tification. Various normalization methods such as IS-based 
and quality control-based techniques have been reported for 
metabolome analysis, and it is necessary to select an appro-
priate correction method for matching experimental condi-
tions and/or sample features33‒35). Based on the pre-experi-
mental results, GC/MS/MS-based targeted metabolome 
analysis showed high repeatability for extracts from rat 
cerebrum samples. Finally, we applied projection to latent 
structures discriminant analysis (PLS-DA) to the obtained 
metabolome data, demonstrating the dose-dependent effect 
of the drug (Fig. 3). Based on the loading plots, the CBR 
agonist can induce energy metabolism and glutamatergic 
excitatory neurotransmission disorders in the cerebrum. 
Interestingly, these results are consistent with other 
researchers’ findings that CBR agonists can induce mito-
chondrial dysfunction by stimulating CBRs on the outer 
mitochondrial membrane36,37).

Future Perspectives for a Newly Developed 
Metabolome Analysis

As described above, GC/MS/MS-based targeted metabo-
lome analysis has played a pivotal role in metabolomics 
because of its selectivity, operability, and robustness. Chro-
matographic separation is necessary for simultaneous anal-
ysis of a vast number of metabolites, though it leads to a 
low-throughput analytical run. Particularly, some derivat-
ized metabolites are known to be unstable even at room 
temperature, and their degradation can bias the final results. 
Thus, there is a pressing and underlying need to develop a 
high-throughput analytical method for metabolomics.

Ambient ionization techniques such as direct analysis in 
real time (DART) and desorption electrospray ionization 
(DESI) are currently widely used in various fields38‒41), and 
many reports have been published on their applications to 
metabolome analysis42‒45). Ambient ionization techniques 
lack chromatographic separation, resulting in lower selec-
tivity, though their high-throughput nature is advantageous.

Our team also developed high-throughput analysis of 
metabolites using probe electrospray ionization tandem 
mass spectrometry (PESI/MS/MS) and applied this to ani-
mal model tissues42,44). PESI was developed in 2007, and 
this uses a thin probe needle for sampling and ionization 
units46). Our team combined PESI and tandem mass spec-
trometry, resulting in higher selectivity and S/N ratio. Par-
ticularly, our system can directly analyze tissue samples 
such as liver and brain without sample pretreatment, 

Fig. 3.　 Score plots of projection to latent structures discriminant analysis for control and cannabinoid receptor agonist 
administered mice (reprinted from ref. 14 with permission). Blue (black in monochrome printing) plots, 5 mg/kg ad-
ministered group; red (dark) plots, 15 mg/kg administered group; green (bright) plots, control group. These groups 
were separated along the first principle component axis, which shows a dose-dependence effect of the agonist.

Fig. 3.　 Score plots of projection to latent structures discriminant analysis for control and cannabinoid receptor agonist 
administered mice (reprinted from ref. 14 with permission). Blue plots, 5 mg/kg administered group; red plots, 
15 mg/kg administered group; green plots, control group. These groups were separated along the first principle com-
ponent axis, which shows a dose-dependence effect of the agonist.
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achieving total flow rapidity for metabolite analysis. Thus, 
our system was introduced as the fastest method in a review 
article by Zampieri et al.47). We have extended the method 
to one hundred metabolites and completed direct tissue 
analysis within 5 min with no tedious sample pretreatment. 
Ambient ionization/mass spectrometry will be a new ana-
lytical tool for metabolome analysis.

Conclusion
In this mini review, we outline GC/MS/MS-based tar-

geted metabolome analysis and its application to patho-
physiological analysis of animal disease models and inves-
tigation of unknown toxic effects of drugs on animals. GC/
MS/MS-based targeted metabolome analysis generally 
shows high selectivity and improves S/N ratio, providing 
user-friendly platforms for metabolome analysis. In our pre-
vious studies, GC/MS/MS-based metabolome analysis 
strongly helped us to interpret the pathophysiology in the 
animal models. For the serotonin syndrome model rats, we 
were able to systematically understand biological changes 
in the model rats. We also easily found that the abused can-
nabinoid receptor agonist can cause energy metabolism dis-
ruption in rat cerebrum. Although it is difficult to extrapo-
late biological effect on human from such animal studies, 
we could estimate the phenotypic changes such as toxicity 
by applying metabolome analysis to animal models. Addi-
tionally, we discuss future perspectives of new analytical 
tools, especially ambient ionization/mass spectrometry and 
its high-throughput nature, which will be useful for metabo-
lome analysis as it requires no chromatographic separation. 
Improvement of such analytical tools will create new plat-
forms for metabolomics, which can make metabolome anal-
ysis be easier on researchers.
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